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ABSTRACT 
The exploration of alternatives which could replace natural aggregates in the construction sector has led to a 
change in thinking also about waste, which is increasingly being used in Civil and Road Engineering. These 
include Blast Furnace Slag which is a by-product of the steel production process. It finds a “second life” as an 
aggregate or concrete additive, for example. The application of anthropogenic aggregates as substitutes for 
natural aggregates offers the possibility of reducing the number of landfills. Meanwhile, it is important to 
effectively manage the material, which involves reliable estimation of its parameters. The main factor affecting 
the correctness of parameter estimation for anthropogenic aggregates is the fact that they can have different 
properties and chemical composition, depending on where they are manufactured. The coefficient of 
permeability for aggregates is an important parameter for the application of these materials in a variety of 
fields, such as construction, road infrastructure, and land reclamation. It determines the ability of aggregates to 
permeate water, which is crucial for pavement design. Therefore, correct estimation of the coefficient of 
permeability can significantly influence the stability and durability of structures. The objective of the study was 
to analyze various methods of estimating the coefficient of permeability beginning with the simple and well-
known linear regression and compare it with other estimation methods and approaches, including with 
Machine Learning Algorithms. The results obtained were compared with each other, and based on them an 
attempt was carried out to interpret the physical characteristics of the aggregate, which had a significant impact 
on the estimation of the model. The analysis allowed to formulate conclusions and set directions for the 
selection of estimation techniques for the prediction of the permeability coefficient and other geotechnical 
parameters. 

1. Introduction 
The modern approach to the investment process is a key area of interest, requiring a balance between 

economic goals and environmental concerns. Sustainable design, encompassing the stages of construction, 
operation, and dismantling of a structure, has become an imperative for designers, engineers, and architects. 
The priority lies in minimizing resource consumption and selecting materials with a low environmental impact 
[1]. However, the dynamic development of construction infrastructure generates a significant demand for non-
renewable aggregates, which may lead to limitations in access to deposits in the future [2]. 

In the context of ecological efficiency, the construction and operation of buildings not only consume large 
amounts of natural resources but also contribute significantly to greenhouse gas emissions. Forecasts indicate 
increasing challenges related to access to natural aggregates, further emphasizing the need to explore 
alternative solutions [2]. In the context of the European Union, which is a highly industrialized economy, there 
is an urgent need for the development of recycling technologies, especially considering that only 38% of all 
generated waste is currently subject to recycling [3]. 

One potential solution in the waste management sector is slag, a byproduct of industrial technological 
processes. In 2019, slag alone accounted for 14.3 million tons of industrial waste (Central Statistical Office, 
2020). In the context of sustainable design, attention should be drawn to blast furnace slag (BFS), which 
undergoes a cooling process leading to the crystallization of minerals. Due to growing challenges in accessing 
natural aggregates, slag can serve as a valuable resource in the construction process [5, 6]. 

Machine learning techniques have their origins in the method of least squares, the first predictive method 
allowing for simplified estimation of linear parameters. 

Linear Regression, one of the simplest methods for approaching regression problems, involves predicting 
an unknown variable using existing results. In the described method, the presence of residual values 
(residuals) is taken into account [7]. 
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Artificial Neural Networks (ANN), also known simply as neural networks, represent a popular machine 
learning technique for data analysis through layers of decision-making. Neural networks divide data into layers 
and process hidden layers to obtain the final output. As additional hidden layers are added to the network, the 
model’s ability to analyze complex patterns improves. Therefore, models with a large number of layers are 
often referred to as deep learning to highlight their deeper and enhanced processing capabilities [8]. 

Random Forest is an extension of decision tree techniques. Closely related to bagging (a method for 
optimizing machine learning algorithms), both techniques involve the application of multiple decision trees and 
utilize bootstrap sampling (a technique for aggregating results from multiple model estimations) for data 
randomization. Random forests artificially limit the selection of variables by restricting the number of variables 
considered for each split. In the case of bagging, decision trees often look similar because they use the same 
variable at the beginning of their decision structure to reduce entropy [9–11]. 

Gradient Boosting selects variables that improve prediction accuracy with each new tree. Decision trees 
grow sequentially, as each tree is created using information from the previous tree, rather than independently. 
Errors made in training data are recorded and then applied to the next round of training data. In each iteration, 
weights are added to the training data based on the results of the previous iteration [12, 13]. 

The article focuses on the application of machine learning algorithms to predict one of the most significant 
geotechnical parameters – the filtration coefficient. This parameter finds application in structures for water 
retention and in determining filtration through the soil of embankment constructions. Knowledge of the filtration 
coefficient is useful for selecting various filters, including reverse filters preventing adverse phenomena during 
water flow through a porous medium. The filtration coefficient also plays a significant role in road engineering, 
particularly in designing embankment layers for road constructions. The article also employs the SHAP 
interpretative technique to interpret physical material parameters that have a significant impact on determining 
the filtration coefficient. 

2. Materials and Methodology

2.1 Materials
The Blast Furnace Slag used in the study came from a steel melting plant. The constant head method was 

used to test permeability characteristics for Blast Furnace Slag. The method is characterized by simplicity and 
unchanging test conditions, and the constant head method alone is one of the most reliable techniques for 
measuring permeability in non-cohesive soil [14, 15]. The coefficient of permeability study used aggregate of 
Blast Furnace Slag tested samples were from several parties of the material. Basic data on the grain size 
ranges of the tested samples are presented in Figure 1. and data on physical parameters are included in Table 
1. 

Figure 1. Grain size curves of the tested material. 
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The samples were compacted with an Proctor normal energy [16] of 0.59 [J/cm3] and 2.65 [J/cm3].

Table 1. Physical parameters of Blast Furnace Slag. 

Volumetric 
density

Porosity Index 
porosity

Homogeneity 
index - Cu

Grain size 
curvature
index - Cc

Gradient

Min. 1.02 0.54 1.18 19.49 1.12 0.08

Max. 1.08 0.57 1.31 34.29 7.85 1.02

2.2 Methodology
The process and methodology of the analysis are outlined in Figure 2. Prior to commencing the analysis, 

data collection and cleaning were undertaken. During the learning and testing phases, the data was partitioned 
into a training set (70%) and a test set (30%). Model validation was executed using the 10-fold Cross 
Validation method. 

Cross-validation, a resampling procedure, serves to evaluate machine learning models on a limited data 
sample. The procedure involves a parameter, k, denoting the number of groups in which the data sample is to 
be divided. When a specific value for k is chosen, it can be employed for the model; for instance, k=10 results 
in 10-fold cross-validation. This technique is widely utilized in Machine Learning to estimate a model’s 
predictive ability. Essentially, it uses a restricted sample to gauge how well the model is expected to perform 
overall when making predictions on data not employed in the model’s training. This method is favored for its 
simplicity and its tendency to provide a less biased or optimistic estimate of the model’s ability compared to 
other methods. Incorporating a measure of variance in skill scores, such as standard deviation or standard 
error, is recommended for a comprehensive evaluation. The outcome of k-fold cross-validation is summarized 
by the average of the model’s skill scores. This practice enhances the reliability of the model obtained during 
the learning and testing phases. 

Including a measure of variance in skill scores further refines the assessment, contributing to a more 
nuanced understanding of the model’s performance. The results were verified with the use of error analysis, 
for individual models were estimated: 

Mean Square Error (MSE) 

Figure 2. Analysis scheme.
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Model MSE RMSE MAE R2

Random Forest 1.73 10-6 0.001 0.001 0.965 
Gradient Boosting 1.75 10-6 0.001 0.001 0.964 
Neural Network 3.23 10-6 0.002 0.002 0.934 
Linear Regression 4.59 10-6 0.002 0.002 0.907 
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        (1) 
Root Mean Square Error (RMSE): 

       (2) 

Mean Absolute Error (MAE): 
        (3) 

Coefficient of determination (R2): 
         (4) 

Once the models for each Machine Learning algorithm were determined, an interpretive analysis was 
performed using the SHAP technique. 

3. Results

The results chapter is divided into a part related to the discussion of the results of estimating the permeability 
coefficient using Machine Learning algorithms, the second part discusses the results of interpreting the various 
models and physical parameters of the material having the most significant impact on the estimation of the 
permeability coefficient. 

3.1 Estimation results
The results of estimating the permeability coefficient using the four estimation techniques of linear regression, 
Random Forest, Gradient Boosting and Neural Network are presented below in Tables 2 and 3. The best 
results for the coefficient of determination, R2, were obtained for the Random Forest algorithm. For this 
algorithm, R2 = 0.965 was obtained for the learning set, and for the test set R2 = 0.983. Similar results were 
obtained for the Gradient Boosting algorithm - R2 = 0.964 was obtained for the learning set, and for the test set 
R2 = 0.982. The lowest results of the learning set were obtained for Linear Regression, R2 was 0.907, and for 
the test set for the Neural Network algorithm 0.790.

Table 2. Evaluation on training set. 

Model MSE RMSE MAE R2

Random Forest 1.73 10-6 0.001 0.001 0.965

Gradient Boosting 1.75 10-6 0.001 0.001 0.964

Neural Network 3.23 10-6 0.002 0.002 0.934 

Linear Regression 4.59 10-6 0.002 0.002 0.907 

Table 3. Evaluation on test set. 

Model MSE RMSE MAE R2

Random Forest 8.30 10-7 0.001 0.001 0.983

Gradient Boosting 8.79 10-7 0.001 0.001 0.982

Linear Regression 4.55 10-6 0.002 0.002 0.907 

Neural Network 1.02 10-5 0.003 0.002 0.790 
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The results of the permeability coefficient study and their comparison with the estimation results obtained 
for the algorithm with the highest predictive performance Random Forest are presented in Figure 3. 

3.2 Interpretive analysis 
The application of the SHAP interpretation technique allowed the determination of the physical properties of 
the material having the greatest influence on the formation of individual models based on the algorithms. The 
formation of the model based on the Random Forest algorithm was most influenced by Compaction energy, 
gradient and particle size, d50. Other model interpretation results are presented in Figure 4. 

Random Forest Gradient Boosting

Neural Network Linear Regression

Figure 4. The models interpretation results. 

Random Forest training set Random Forest test set

Figure 3. Results of the permeability coefficient and predictive performance of Random Forest. 
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4. Conclusion

The paper analyzes applications of Machine Learning algorithms to predict the permeability coefficient, a 
critical geotechnical parameter. In particular, Random Forest emerges as the most effective algorithm, 
achieving the highest coefficient of determination (R2) in both the learning set (0.965) and the test set (0.983). 
Gradient Boosting also performed well in predicting this parameter, with R2 values of 0.964 and 0.982 for the 
learning and test sets, respectively. Linear regression and Neural Network algorithms show lower R2 values, 
indicating relatively less accurate predictions. The SHAP interpretation technique has been used to uncover 
influential physical material properties affecting individual models. The analysis reveals that factors such as 
compaction energy, gradient and particle size (d50) significantly affect Random Forest model formation. In 
conclusion, the paper highlights the effectiveness of Machine Learning, particularly Random Forest, in 
predicting the filtration rate. SHAP interpretation provides valuable insight into the material properties that 
shape predictive models, enhancing the understanding of geotechnical parameters in the context of 
sustainable design and construction practices. 
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